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ABSTRACT
In certain geophysical contexts such as lava lakes and mantle convection, a cold,

viscous boundary layer forms over a deep pool. The following model problem investigates
the buoyant instability of the layer. Beneath a shear-free horizontal boundary, a thin layer
(thickness d1) of very viscous fluid overlies a deep layer of less dense, much less viscous
fluid; inertia and surface tension are negligible. After the initial unstable equilibrium
is perturbed, a long-wave analysis describes the growth of the disturbance, including the
nonlinear effects of large amplitude. The results show that nonlinear effects greatly enhance
growth, so that initial local maxima in the thickness of the viscous film grow to infinite
thickness in finite time, with a timescale 8µ/∆ρ gd1. In the final catastrophic growth the
peak thickness is inversely proportional to the remaining time. (A parallel analysis for
fluids with power-law rheology shows similar catastrophic growth.) While the small-slope
approximation must fail before this singular time, the failure is only local, and a similarity
solution describes how the peaks become downwelling plumes as the viscous film drains
away.
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BUOYANT INSTABILITY OF A VISCOUS FILM OVER A PASSIVE FLUID

1. INTRODUCTION
This work examines the strongly nonlinear effects of finite amplitude in the Rayleigh-

Taylor instability of a horizontal viscous film under a shear-free boundary and over a much
less viscous fluid. Inertia and surface tension are neglected, and, in the parameter range
considered, the motion is limited by normal stresses in the more viscous fluid. The analysis
exploits the fact that the most unstable wavelengths are long compared to the thickness
of the film. The results show how the growth of disturbances to the interface becomes
greatly enhanced when the disturbance amplitude becomes large, leading to the formation
of downwelling sheets or plumes in a finite time.

The motivation for this problem comes from certain geophysical situations, partic-
ularly the stability of the Earth’s lithospheric plates. In simplified terms, the oceanic
lithosphere (tectonic plates) can be considered a cold, stiff thermal boundary layer above
the convecting mantle. Where two plates come together, one subducts under the other
and flows downward due to its negative buoyancy. The question of how a new subduction
zone is formed, how one large plate may break into two and thus allow some of the dense
material to flow back down into the mantle, is not yet resolved. Other closely related
geophysical situations include the surfaces of lava lakes, thermal convection in the mantles
of other planets, and possibly convection in the Earth’s solid core.

This work examines a simple model of one possible mechanism for the initiation of
subduction: the Rayleigh-Taylor instability. In this model, the lithosphere and the mantle
are treated as distinct, highly viscous fluids, the lithosphere being denser (and much more
viscous) than the mantle. In this unstable configuration, any variations in the lithosphere
thickness tend to grow, and when the thickness variations become significant, nonlinear ef-
fects cause the growth to accelerate catastrophically, giving downwelling regions (modelling
subduction).

A more realistic model of the lithosphere may be a fluid with a power-law rheology,
with most of the layer being very stiff, but yielding more readily in regions of rapid de-
formation. A long-wave analysis for this case (Appendix B) shows that the growth in the
deforming regions again becomes catastrophic due to finite-amplitude effects, as in the
Newtonian case.

A companion work (Canright and Morris, in prep.) considers a different model for
the lithosphere: as a thermal boundary layer growing under a suddenly cooled horizontal
boundary, where the fluid viscosity depends strongly on temperature. The long-wave anal-
ysis shows that, again, the nonlinear effects of finite amplitude give catastrophic growth,
yielding sheets in finite time. For that case the force balance and the resulting growth of
peaks is essentially the same as that considered here, because thermal diffusion becomes
unimportant where the layer is thick. The Rayleigh-Taylor problem considered here is the
simplest example of this dynamic balance.

The instability of a dense fluid supported by a lighter one has been studied extensively,
beginning with the analysis of Rayleigh (1883). Taylor (1950) noted that acceleration
would give the same effect as gravity, in agreement with the experiments of Lewis (1950).
A thorough introduction to the linear theory is given by Chandrasekhar (1961, Ch. X),
and recent surveys of previous work are given by Sharp (1984) and Kull (1991). Many
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of the analyses (e.g., Bellman and Pennington, 1954, and Menikoff et al., 1978) have
focused on the initial small-amplitude growth, where linearized equations are appropriate.
One approach for examining the nonlinear effects of large amplitude is direct numerical
simulation, e.g., Harlow and Welch (1966) and Tryggvason (1988), or through boundary-
integral computations, e.g., Baker and Meiron (1984), and Newhouse and Pozrikidis (1990).

To investigate the nonlinear effects analytically, the most common approach has been
the perturbation method, where various quantities are expressed as power series in the
small initial amplitude or slope, giving linearized equations for each order (e.g., Emmons
et al., 1960). However, a wide variety of other methods have been employed (primarily
for inviscid fluids) e.g., least-squares approximation (Kull, 1986), averaging (Drazin, 1969),
multiple time scales (Nayfeh, 1969), strained coordinates (Amaranath and Rajappa, 1976),
generalized coordinates (Dienes, 1978), Lagrangian formulations (Ott, 1972), and heuristic
models (Baker and Freeman, 1981, Aref and Tryggvason, 1989). Also, Dussan V. (1975)
used energy methods to determine the stability of disturbances of arbitrary amplitude.
In the above studies, inertia is important. The situation we consider, of a thin viscous
layer in creeping flow, has been examined primarily in the geophysics literature, e.g., the
experiments and weakly nonlinear theory of Whitehead and Luther (1975).

Our analysis is equivalent to a perturbation expansion in the interfacial slope, which
for long waves remains small even for large amplitudes. But unlike the standard approach,
the interface position is not expressed as a series; hence the (leading-order) interface con-
ditions are nonlinear, being applied at the moving interface rather than expanded about
a plane. In this way the nonlinear effects of finite amplitude are explicitly included. We
derive the small-slope equations for three dimensions, and give solutions for the two-
dimensional and axisymmetric cases. The results show that thickness maxima grow to
infinite thickness in finite time; thereafter the layer drains through these downwelling re-
gions. (Of course, the small-slope assumption must fail before this, but the failure is
localized in asymptotically narrow regions with negligible effects on the dynamics in the
rest of the layer.)

2. PROBLEM STATEMENT
Two horizontal layers of distinct Newtonian incompressible fluids are bounded above

and below by horizontal shear-free boundaries (see figure 1). The upper fluid (of density
ρ1, viscosity µ1, and average layer thickness d1) is denser and much more viscous than
the lower fluid (of density ρ2 < ρ1 and viscosity µ2 � µ1), and the upper layer is very
thin (d1 � d2). Surface tension is neglected, and both fluids are assumed to be so viscous
that we can neglect inertia. The former assumption requires that γk2/∆ρg � 1, while the
latter requires ∆ρgL3/ρ2ν

2 � 1, where γ is the surface tension, k is the wavenumber, L is
the largest length scale, ∆ρ ≡ ρ1 − ρ2, g is the acceleration of gravity, and ν is the smaller
kinematic viscosity. (The latter restriction is easily satisfied in mantle flow.)

Initially both fluids are at rest in unstable equilibrium. At t = 0 the interface is slightly
disturbed, after which the position of the interface is δ(x, y, t). (Long-wave solutions will
be given only for the special cases of two-dimensional and axisymmetric disturbances.)

A reduced pressure p is defined in terms of the total pressure P by:

P (x, y, z, t) = p(x, y, z, t) + ρ2gz (2.1)
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so that in equilibrium p is a constant in fluid 2. Then the governing equations are:

in fluid 1: ∇(p + ∆ρgz) = µ1∇2u (2.2a)
in fluid 2: ∇p = µ2∇2u (2.2b)

∇ · u = 0 (2.3)

where u is the velocity vector with components (u, v, w). The boundaries exert no shear,
and across the interface, which moves as a material surface, both velocity and stress are
continuous, hence:

at z = 0 and at z = d1 + d2 : w = uz = vz = 0 (2.4a)

at z = δ(x, y, t) :
[
u
]∣∣2

1
= 0, (2.4b)

[
σijnj

]∣∣2
1

= 0, (2.4c)
δt + uδx + vδy = w (2.4d)

where subscripts indicate partial derivatives, the brackets
[ ]∣∣2

1
indicate the change in the

enclosed quantity across the interface from fluid 1 to fluid 2, σij is the reduced stress
tensor (using the reduced pressure p), and n is a unit vector normal to the interface, with
components ni. (If the upper boundary is instead a free surface with no shear and zero
pressure, then in the long-wave analysis below, the surface deflection is proportional to the
two-fluid interface deflection in the ratio ∆ρ/ρ, which is assumed to be small. Also note
that the boundary condition at z = d1 + d2 is irrelevant to the long-wave analysis below,
provided fluid 2 is sufficiently deep.) Specification of the initial interface position δ(x, y, 0)
completes the problem definition.

3. LONG-WAVE ANALYSIS
The disturbance can grow in a variety of different ways, depending on the viscosity

ratio, the depth ratio, and the dimensionless wavenumber:

α ≡ µ2/µ1 , β ≡ d2/d1 , ε ≡ kd1 (3.1)

where the disturbance has a characteristic wavenumber k. Here we focus on the case where
the lower fluid layer is much less viscous and deeper than the upper (α � 1, β � 1).

The linearized small-amplitude solution given in Appendix A shows that for this case
the fastest growing wavelength is long compared to d1. In fact, the linearized growth rate
is nearly constant over a broad range of wavelengths:

max
(
α,
√

α/β
)
� ε � 1 (3.2)

as illustrated in figure 7a. In this range, the growth is limited by normal stresses in the
upper fluid, which moves nearly horizontally, while the lower fluid is passively moved by
the interface. Outside this range, for waves short compared to d1, the growth is reduced
because only a fraction of layer 1 is mobilized, and for long enough waves the viscous
resistance of fluid 2 slows the growth.
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We examine the finite-amplitude growth of long-wave disturbances in this fastest-
growing range, exploiting the fact the slope of the interface remains small even for large
amplitudes (until the disturbance grows to the order of the initial wavelength). What
follows is the leading-order asymptotic analysis, containing only the dominant balance of
forces. This balance is insensitive to wavelength (the linearized growth rate is constant
to within O(ε4)), so this analysis cannot predict the single wavelength giving maximum
growth.

The small slope of the interface greatly simplifies the dynamics of the thin upper layer,
which controls the growth. In fluid 1, the horizontal length scale (k−1) is much larger than
the vertical (d1), so by continuity the horizontal velocity components (scale U , say) are
large relative to the vertical components (εU). Then the momentum equation implies the
vertical variation of reduced pressure is negligible (O(ε)) compared to horizontal variations.

In fluid 2, the horizontal velocity and length scales are those of the interface (U and
k−1); the vertical length scale is comparable (except for waves long compared to d2, where
the depth is the vertical scale). Then the shear stress from fluid 2 scales as µ2uz ∼ µ2kU
(or ∼ µ2U/d2 in the latter case). Since the shear in fluid 1 scales as µ1uz ∼ µ1wx ∼ µ1εkU ,
then the shear from fluid 2 will be negligible provided α � ε (or α/β � ε2 if βε < 1),
which is just the lower bound on wavenumber assumed above. For wavelengths in this
range, the interface motion is controlled by the dynamics of the upper fluid, for which the
lower fluid is effectively passive and hydrostatic.

Then in layer 1, both the upper boundary and the interface appear shear-free, so the
horizontal velocity components are independent of z (to O(ε2)), as are the components
τxx, τxy, τyy, τzz of the deviatoric stress tensor τij . (This scaling analysis is extended to
other wavelengths in Canright, 1987.)

While the long-wave equations can be derived by expanding the velocity and stress in
powers of ε, the meaning of the result is better understood as a force balance on a small
column of layer 1, as shown in figure 2. Here only horizontal forces are considered, and
as before the total stress everywhere has been reduced by the hydrostatic pressure of fluid
2, which doesn’t effect the horizontal balance. Then there are no forces acting on the top
and bottom of the column, and so the net force acting on the sides must be zero. The
differential form of this balance can be written in terms of a two-dimensional reduced force
tensor Fij which results from integrating the reduced stress tensor across the layer

Fij ≡
∫ δ

0

[−(p + ∆ρgz)δij + τij] dz , i, j = 1, 2 (3.3)

where δij is the Kronecker delta. The normal stress condition at the interface

at z = δ : −(p + ∆ρgδ) + τzz = 0 (3.4)

can be used to eliminate p, so the reduced force is

Fij = δ(−P̄ δij + τij) (3.5a)
P̄ ≡ −∆ρgδ/2 + τzz (3.5b)
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where P̄ is the average pressure and τzz is evaluated at the interface. Then the horizontal
force balance means the reduced force tensor has zero divergence

Fij,j = 0 , i, j = 1, 2 (3.6)

The kinematic interface condition becomes, on eliminating w using continuity:

δt + (δu)x + (δv)y = 0 (3.7)

These two equations (along with conditions at the edges of the layer) govern the growth of
long-wave disturbances, including the nonlinear effects of finite amplitude, with a relative
error of O(ε). This conclusion is independent of rheology, and relies only on the small-
slope approximation (valid until amplitudes are comparable to the wavelength) and the
assumption that fluid 2 is dynamically unimportant.

The dimensionless form of (3.6) becomes, for Newtonian rheology,
[
δ2 + δ(ux + 1

2vy)
]
x

+ 1
4 [δ(uy + vx)]y = 0 (3.8a)

[
δ2 + δ(vy + 1

2ux)
]
y

+ 1
4 [δ(uy + vx)]x = 0 (3.8b)

while (3.7) remains the same under non-dimensionalization. (A fluid with power-law rhe-
ology is considered in Appendix B.) Here we used a vertical length scale of d1, a time scale
of 8µ/∆ρgd1 (corresponding to half the small-amplitude growth rate), and any horizontal
length scale. In this simplified problem, the layer thickness δ is analogous to variable den-
sity, as shown by (3.7), but also acts somewhat like variable viscosity, as well as a body
force, in (3.8).

If the initial disturbance to the interface is axisymmetric or varies only in one direction,
the dimensionality of the problem is further reduced, allowing simpler solutions to illustrate
the nonlinear dynamics. The axisymmetric equations are

[
δ2 + δ

(ru)r

r

]

r

= 1
2δr

u

r
(3.9)

δt +
(rδu)r

r
= 0 (3.10)

where u is the radial velocity component and r the radial coordinate.
The long-wave versions of the two-dimensional equations

(
δ2 + δux

)
x

= 0 (3.11)
δt + (δu)x = 0 (3.12)

allow greater simplification. The first shows that the reduced force (scalar) F ≡ δ2 + δux

acting on any vertical cross-section of the layer is independent of position, though it may
depend on time; the value of F (t) depends on the conditions at the ends of the layer.

We can eliminate u by adopting a Lagrangian formulation, where the fluid “particle”
in this case is a material cross section of the layer. Then the new variables are (x0, t),
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where x0 refers to a particular fluid section by its initial position. The resulting ordinary
differential equation describes the growth of a moving cross section:

Dδ

Dt
= δ2 − d2

e(t) (3.13)

where Dδ
Dt ≡ δt + uδx and de(t) ≡

√
F (t) is the current equilibrium thickness, i.e., that

with no tendency to grow or shrink. This result shows that the vertical motion of the
interface depends only on the local layer thickness and the current equilibrium thickness
(which may depend on the overall shape of the whole layer). Thus any fluid cross section
does not care what its immediate neighbors are doing, and the growth is insensitive to
wavelength, as expected.

The horizontal motion of a cross section depends on the state of the whole layer.
The position of each fluid cross section can be followed by integrating the strain. By
conservation of mass, δ0 dx0 = δ dx, where δ0(x0) = δ(x0, t = 0) is the initial thickness of
the section, so the strain is dx/dx0 = δ0/δ and the position is given by:

x(x0, t) =
∫ x0

0

δ0(ξ0)
δ(ξ0, t)

dξ0 (3.14)

where the x origin is chosen at some stationary fluid cross section.

4. SOLUTIONS
To show most clearly the effects of finite amplitude, we concentrate on the simplest

situation, where the initial disturbance depends only on x. We give solutions to (3.13) for
three types of conditions at the ends of the layer, for which de(t) is simple to evaluate. For
the first, the layer is of infinite extent but the disturbance is localized, so that far away
the layer remains in (unstable) equilibrium, and de = 1. Next is the case of a periodic
disturbance; then de(t) is an integral property of the shape of the layer. The third case
treats a layer of finite extent, with abrupt ends surrounded by fluid 2, so de = 0; this
solution also applies approximately whenever δ grows large enough that de is negligible.
Lastly, to illustrate one significant difference when the disturbance varies in more than one
direction, we show a solution to (3.9, 3.10), the axisymmetric case.

4.1. LOCALIZED DISTURBANCE
The most illustrative case is an infinite layer with a disturbance of finite extent. Then

the force on the ends of the disturbed region remains constant: de = 1. This gives a simple
solution:

δ(x0, t) =
δ0(x0) − tanh(t)
1 − δ0(x0) tanh(t)

(4.1)

where again δ0 is the initial thickness and x0 the initial position of a fluid section. This
solution predicts a singularity in finite time: at the critical time t∗ ≡ 1

2
ln |(δ0 +1)/(δ0−1)|

the thickness δ goes to ∞ or 0, depending on whether the initial thickness δ0 was greater or
less than 1. (Of course, the small-slope approximation must fail when the peak thickness
gets large enough; this point is addressed in the next section.)
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The early growth of a disturbance of small amplitude a(x0, t) ≡ δ(x0, t)−1 is roughly:

a(x0, t) ≈ a0(x0)e2t[1 + a0(x0)(e2t − 1)/2] (4.2)

Initially this gives the exponential growth of the linearized solution, but as nonlinearities
become important the perturbation growth accelerates for peaks (a > 0) and retards for
troughs (a < 0). To preserve volume, the peaks get narrower and sharper while the
troughs broaden and flatten. A rough estimate for the duration of the linear behavior is
∆t ∼ 1

2
ln |1/a0|.

As the amplitude gets large, the growth becomes algebraic in the time remaining
before the singularity at time t∗:

δ0 > 1 : δ ≈ 1/(t∗ − t) (4.3a)
δ0 < 1 : δ ≈ t∗ − t (4.3b)

which shows that the rapid nonlinear growth occurs over a time scale ∆t ∼ 1, or, dimen-
sionally, 8µ/∆ρgd1.

The catastrophic growth shown by the inverse relation (4.3a) between peak thickness
and remaining time is strikingly different from the exponential growth of small ampli-
tudes. For large peaks the relevant time scale is inversely proportional to the current peak
thickness; thus large-amplitude effects drastically enhance the growth of peaks.

Another effect of finite amplitude is that the overall strain increases, i.e., the disturbed
section stretches out in the x direction. In fact, it can be shown (using the Schwarz
inequality), that for any initial perturbation with a zero mean, the length of the perturbed
section increases continually. This surprising behavior does not apply in general, but rather
is a direct consequence of the assumption that the force on the ends remains constant.

As an example, if the initial perturbation is sinusoidal then:

δ0 = 1 + b cosx0 (4.4a)

δ(x0, t) =
2 + b(1 + e2t) cosx0

2 + b(1 − e2t) cosx0
(4.4b)

x(x0, t) = −b tanh(t) sin(x0) +
(
sech2(t) − tanh(t)

)
x0

+
2 tanh(t)sech(t)√
e−2t − b2 cosh2(t)

arctan

(√
e−t − b cosh(t)
e−t + b cosh(t)

tan
(x0

2

))
(4.4c)

and the overall strain is sech2(t) − tanh(t) + 2 tanh(t)sech(t)/
√

e−2t − b2 cosh2(t), which
increases monotonically with time. The layer shapes for one wavelength of this solution
at various times are shown in figure 3; as the growth becomes nonlinear the wavelength
stretches out. If the initial amplitude b is small, the solution simplifies:

δ ≈
1 + b

2e2t cos x0

1 − b
2e2t cos x0

(4.5a)

x ≈ 4√
1 −

(
b
2
e2t
)2 arctan

(√
1 − b

2
e2t

1 + b
2
e2t

tan(x0/2)

)
− x0 (4.5b)
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4.2. CONSTANT WAVELENGTH DISTURBANCE
For the second case, we enforce the more physically reasonable condition that the

wavelength of the disturbance remain constant over time. (This could apply either to
a periodic disturbance of infinite extent, or to a layer of finite extent bounded by fixed
shear-free end walls.) Then the reduced force in the layer must vary with time to give
zero velocity at both ends of one wavelength. Integrating (3.11) in x shows that fixed ends
require:

d2
e(t) =

∫ L

0
δ dx

∫ L

0
1/δ dx

(4.6)

where L is one wavelength, and the numerator is just the total volume of fluid in the layer
over that wavelength, and so remains constant. Thus the thinnest parts of the layer have
the greatest effect on the current equilibrium thickness de(t). We find that the constant
wavelength requirement causes the equilibrium thickness de(t) to decrease in over time
(the proof again involves the Schwarz inequality).

Eliminating de from (3.13) (and using δdx = δ0dx0) gives a single partial integro-
differential equation:

Dδ

Dt
= δ2 −

∫ L

0
δ0 dx0∫ L

0
δ0/δ2 dx0

(4.7)

Again, the local growth depends only on the relation between the local thickness and an
integral property of the entire disturbance, but is independent of the immediate neighbor-
hood.

For large amplitude, the main effect of fixed wavelength is to slow the growth of
troughs; in fact, the thickness δ is prevented from reaching zero. In contrast, peak growth
is only slightly accelerated. When peaks become large, then the equilibrium thickness
de becomes negligible in comparison, as in the constant-de case, but sooner here since
de decreases. Thus large peaks show the same catastrophic growth to infinite thickness,
given by (4.3a). The growth of large peaks, where de is unimportant, is insensitive to end
conditions, and our previous conclusion, that the growth of peaks is dramatically enhanced
by large-amplitude effects, applies in general.

Qualitatively this case is very similar to the previous, as shown by the profiles in
figure 4, except that the wavelength remains constant. Figure 5 compares the growth of
the disturbance for fixed wavelength with that for constant end forces, each for an initial
small sinusoidal disturbance.

4.3. LARGE-AMPLITUDE BEHAVIOR
Where δ � de, we can approximate (3.13) by

Dδ

Dt
= δ2 (4.8)

(This would also apply if the layer were of finite extent, surrounded by fluid 2, so de = 0.)
The solution

δ(x0, t) =
1

1
δ0(x0)

− t
(4.9)
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shows each cross section reaching infinite thickness in a finite time t = 1/δ0; this is the
same growth as (4.3a).

For this case, (3.11) integrates to:

u(x, t) = −
∫ x

0

δ(ξ, t) dξ (4.10)

and as long as δ remains finite everywhere, we can express this in Lagrangian coordinates
as:

u(x0, t) = −
∫ x0

0

δ0(ξ0) dξ0 (4.11)

Hence each cross section moves at a uniform speed over time. These results apply locally
around any large peak where de is negligible.

4.4. AXISYMMETRIC GROWTH
How does the three-dimensional case differ from the two-dimensional solutions above?

One difference is that the reduced force is a tensor that varies with position, rather than a
uniform scalar. Consequently, two separate portions of the layer having the same thickness
may not grow at the same rate. Another difference is the possibility of (vertical) vorticity
and shear stresses in the layer.

Here, we examine the growth of an axisymmetric disturbance without swirl. Then the
reduced force tensor Fij is diagonal in the (r, θ) coordinates, without shear, and has radial
and circumferential components

F11 = δ2 + δ
(
ur + 1

2
u/r
)

(4.12a)

F22 = δ2 + δ
(

1
2
ur + u/r

)
(4.12b)

where u is the radial velocity. The radial force balance (3.9) can be expressed as

(F11)r + 1
2δ
(u

r

)
r

= 0 (4.13)

The axisymmetric equations (3.9, 3.10) apparently have no simple closed-form solu-
tions, except when the layer is of uniform thickness. In this special case, u ∝ r, so F11 is
uniform, and the thickness grows according to

dδ

dt
= 4

3

(
δ2 − F11(t)

)
(4.14)

Comparing with (3.13) shows that the axisymmetric growth of a flat layer is qualitatively
identical to (though one-third faster than) the two-dimensional case for comparable force
conditions on the boundary. This special case may be indicative of the dynamics of a
smooth peak at the origin; in numerical solutions the growth of large peaks approaches the
inverse time behavior δ ∝ (t∗ − t), where the constant of proportionality is of order unity.

We have solved the axisymmetric equations numerically for two different edge condi-
tions and a variety of initial conditions. For a localized disturbance, at the edge of the
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disturbed disk (ru)r = 0 to balance the force in the surrounding undisturbed layer. As in
the two-dimensional version, the disturbed region tends to spread out since the broadening
of the troughs overwhelms the narrowing of the peaks. For a disturbance of fixed radial
extent, then at the edge u = 0; this case is a circular approximation of one hexagonal
cell of a periodic array, such as seen in the experiments of Whitehead and Luther (1975).
Again, the spatial constraint limits the deepening of troughs, while slightly accelerating
the growth of peaks. In figure 6, we show profiles for this case, started from a radial
sinusoid. This shows that the central peak grows faster than the ring-shaped outer peak,
though they begin with identical amplitudes.

For all of the axisymmetric cases we have calculated, the qualitative behavior is sim-
ilar to the two-dimensional versions, in that the nonlinearity leads to broad, flat troughs
between sharpening peaks whose growth accelerates to an inverse-time catastrophe. One
difference, however, is that the growth is no longer merely a function of local thickness,
but also depends on position. For the general three-dimensional case, we would expect
nonlinear growth to yield broad depressions separating sharp peaks and ridges growing
catastrophically into plumes and sheets, although there could be additional effects due to
shear and swirl.

5. VERTICAL SHEET FORMATION
Here we examine what happens in the two-dimensional case when a thickness max-

imum approaches infinite thickness at the singular time t∗. We will show how the peak
becomes a vertical sheet, where the dense viscous fluid drains down. The small-slope equa-
tions still describe the behavior in most of the layer, except in an asymptotically narrow
neighborhood of the sheet, because the sheet has only an asymptotically small effect on
the stress in the layer.

As a peak grows, the small-slope assumption must break down locally before the peak
reaches infinite thickness. Since the initial disturbance wavelength is long compared to
the layer thickness, then when the peak grows larger than a wavelength, that portion
of the layer around the peak where the physical slope of the interface is O(1) or greater
must be asymptotically narrow compared to the whole wavelength. This follows from mass
conservation, and from the shape near the peak approaching (as we will show) an integrable
negative power of x (where x = 0 at the peak). Therefore the small-slope approximation
continues to apply almost everywhere in the layer; what is needed is a description of the
effect of the peak or sheet on the rest of the layer.

In an earlier work (Canright, 1987) we give a large-slope analysis appropriate to
the region around a peak where the small-slope approximation no longer applies. (The
approach used there is essentially that of Wilson, 1988.) Assuming the interface is nearly
vertical, then the flow is extensional, driven by negative buoyancy and limited by normal
viscous stresses. We find that large-slope effects do not slow down the growth, they only
affect the details of the peak shape. Indeed, the catastrophic growth described by (4.3a)
still applies (except for a numerical coefficient of O(1) depending on the shape). Physically,
there is nothing to prevent the fluid from flowing down, and so the peak extends to become
a sheet. Of course, at some point the extending peak either will reach the lower boundary
or will become so long that the viscous resistance of fluid 2 becomes important. In the
former case, a pool forms, without effect on the upper layer, but in the latter, the flow
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driven in fluid 2 could alter the dynamics of the upper layer.
To the rest of the layer the sheet appears as an isolated singularity, a sink of fluid.

The horizontal force balance must still apply even to the sheet, and so the reduced force in
the layer F (t) is continuous across the sheet. In general F (t) is an integral property of the
whole layer, for example (4.6) for a fixed-wavelength disturbance, where the troughs have
a greater influence than the peaks. Because the large-slope region is integrable (as it must
be, since no new mass is created) and asymptotically thin, its effect on F (t) is negligible.

As an example of the formation of a peak singularity, consider what happens when the
initial disturbance is a small-amplitude sinusoid. (For simplicity, we assume the constant-
force end conditions, but since F has little effect on a large peak the results apply to more
general end conditions.) The previous solution (4.5) shows that the peak becomes singular
as be2t/2 approaches unity. In that limit, (4.5a,b) become

δ ≈ cot2(x0/2) (5.1a)
x ≈ 2 tan(x0/2) − x0 (5.1b)

Then near the peak (x0 � 1)

x ≈ x3
0

12
(5.1c)

and so
δ ≈ (x0/2)−2 ≈ (3/2x)−2/3 (5.1d)

This shows that at the singular time the peak becomes proportional to an integrable
negative power of x, specifically δ ∝ x−2/3.

In fact, the same power of x results from any smooth initial peak that locally can
be fit by a parabola. As the singular time is approached, the peak can be described by a
similarity solution, as shown in Appendix C. The general similarity solution shows that a
peak of the more general form δ0 ≈ 1 + b(1 − c|x0|n), where n > 0, gives a singularity of
the form δ(x, t∗) ∝ |x|−m, where m ≡ n/(n + 1). Hence any initial peak becomes, at t∗, a
singularity proportional to an integrable negative power of x.

To follow how fluid flows into the sheet, the large-amplitude equations (4.9, 4.10) apply
near the sheet (but outside the large-slope region). After t∗, there is a singularity (the
sheet) at the origin, and the layer must move in such a way that each fluid cross-section
reaches the singularity at the same time that it reaches infinite thickness. This determines
the strength of the mass sink over time.

Consider the fate of the inverse power of x singularity that forms at t∗. This is most
simply described if we take the state of the layer at t∗ to be the new reference state,
and relabel each fluid cross section x0 by its new reference position x∗ ≡ x(x0, t∗), with
reference thickness δ∗(x∗) ≡ δ(x, t∗), so

at τ = 0 : δ∗(x∗) ≡ δ(x = x∗, t = t∗) = b x−m
∗ , 0 < m < 1 (5.2a)

where τ ≡ t − t∗ and b is some positive amplitude. Then the fluid cross section which
arrives at the singularity at time τ is that which becomes infinitely thick at that time; we
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call this section xs(τ) : x(x∗ = xs(τ), τ) = 0. Using (4.9) gives

xs(τ) = (bτ)1/m (5.2b)
δ(x∗, τ) = b/(xm

∗ − xm
s ) (5.2c)

and so

x(x∗, τ) =
∫ x∗

xs

δ∗(ξ∗)
δ(ξ∗, τ)

dξ∗ = (x∗ − xs) −
xm

s

1 − m
(x1−m

∗ − x1−m
s ) (5.2d)

Away from the sheet (x∗ � xs), the profile is still the starting profile from τ = 0 (x ≈ x∗,
δ ≈ bx−m). However, very close to the sheet:

for ε ≡ (x∗/xs − 1) � 1 (5.2e)
x ≈ mxsε

2/2 (5.2f)

δ/b ≈ 1/(mεxm
s ) ≈ (bτ)

1
2m−1/

√
2mx (5.2g)

This shows that very near the sheet, the singularity goes like 1/
√

x, with a scale
that varies in time. (This local x dependence is actually independent of the starting
conditions, as shown in Canright, 1987, App. C.) From (5.2g) it is clear that whether
the thickness around the sheet grows or shrinks is determined by whether m < 1/2 or
m > 1/2, respectively.

The special case m = 1/2 gives a steady solution. For m > 1/2, the fluid drains
away down the sheet faster than it comes in from the sides, and the square-root singularity
diminishes with time as it spreads out, to match onto the nearly undisturbed profile x−m.
This would be the eventual fate of an initially (t = 0) smooth maximum, which gives
m = 2/3. Conversely, if m < 1/2, the square-root singularity grows as it spreads, fed from
the sides faster than it can drain fluid away. (To get m < 1/2 would require a cusp-like
initial [t = 0] maximum, which may not be physically realistic.) This solution (5.2) is
again a particular case of the general large-amplitude similarity solution of appendix C.

(For the axisymmetric case, there is no similarity solution that describes how a finite
peak grows into a plume, but we speculate that the same qualitative behavior applies. A
steady axisymmetric plume has the shape δ ∝ 1/r.)

With the above description of how a sheet first forms and how it behaves afterward,
the small-slope equations can be used to follow the development of the instability from
initial conditions through rapid large-amplitude growth all the way to the draining away
of the fluid down the sheets. The results will be inaccurate wherever the physical slope of
the interface is not small, but such regions comprise only a small fraction of the domain
and have little effect on the dynamics of the rest of the layer. The only assumption
is that a sheet does not exert any net horizontal force on the surrounding layer. This
assumption may break down if the length of a plume becomes so much greater than the
initial wavelength that the flow it drives in the lower fluid becomes dynamically significant.

6. CONCLUSIONS
The central concern of this work is the nonlinear interactions between buoyant forces

and normal viscous stresses that occur in a buoyantly unstable viscous layer under a shear-
free horizontal boundary and over a much less viscous fluid. After the initially uniform
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thickness of the layer has been perturbed slightly, the early growth of the perturbation
is exponential; the perturbation keeps its shape while it grows. But when the nonlinear
effects of finite amplitude become important, the thicker parts of the layer thicken more
rapidly while the thinner parts thin more slowly, giving in general sharp peaks with broad,
flat troughs in between, over a timescale of 8µ/∆ρ gd1. The accelerating growth of peaks
leads to infinite thickness at some time t∗, and the final catastrophic growth of the peak
thickness δ is algebraic: δ ≈ µ/∆ρg(t∗−t) for the two-dimensional case. The axisymmetric
case shows essentially the same behavior. Similar catastrophic growth is also predicted for
a power-law fluid, though the power of (t∗− t) and the coefficient are different. This shows
how large-amplitude growth is fundamentally different from small-amplitude growth; large-
amplitude effects dramatically enhance the growth of peaks.

The small-slope equations continue to apply to the layer even after the formation of
downwelling sheets, except in an asymptotically narrow neighborhood around each sheet.
This is possible because the sheets do not change the horizontal force balance (unless the
flow they drive in the lower fluid becomes dynamically significant). Applying the equations
up to the singular time shows that at first the sheet should have the local shape δ ∝ |x|−2/3,
but that afterwards, as the sheet drains the layer, the sheet changes shape to δ ∝ |x|−1/2.
This behavior is clarified by a family of similarity solutions, appropriate where δ is large.

This analysis depends on two key assumptions: small interfacial slope and negligible
shear stress from fluid 2. When peaks become large enough, the slope becomes large,
and the approximate equations become invalid. However, as long as the external shear
is negligible, the growth of the disturbance at large slopes is essentially the same as that
predicted here (Canright, 1987, or Wilson, 1988), with catastrophic inverse-time peak
growth; while the details of the peak shape are different, this only modifies the prediction
of t∗ by an O(1) numerical factor. Even so, when the descending sheet becomes long
enough, the flow driven in fluid 2 will result in significant shear stress on the interface,
retarding the growth and invalidating the approximate equations. (It is also possible,
depending on the parameters, that inertia could become important for rapidly growing
peaks, or that surface tension could become significant at the highly curved peaks.) So
this analysis is not appropriate to describe what happens at the tip of a long descending
sheet; e.g., the tip might widen to a bulb, as seen in the experimental plumes of Whitehead
and Luther (1975) and the numerical sheets of Newhouse and Pozrikidis (1990) (though
both of those works have a no-slip surface, a significant difference). Rather, the present
analysis describes the transition from exponential to catastrophic growth of peaks due to
finite amplitude, and the subsequent adjustment of the rest of the layer.

The question of whether plumes or sheets are more likely to develop is beyond the
scope of this work. Indeed, the dynamic balance considered is independent of wavelength,
and so presumably independent of planform as well, at least for Newtonian fluids. However,
we speculate that the lack of downwelling plumes in the mantle is due to rheological effects.
Assuming the lithosphere weakens with deformation, the two-dimensional motion leading
to sheets allows the deformation to be concentrated at the growing peak while the layer
on both sides moves rigidly inward; the axisymmetric flow needed for plumes necessitates
significant deformation throughout the entire layer.

To apply these results to the oceanic lithosphere, an order-of-magnitude estimate
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of the time scale for the formation of a new subduction zone (starting from a finite-
amplitude disturbance, say due to mantle convection) by this process is about 0.3 Gyr,
or one-tenth the age of the earth. (This assumes µ1 ∼ 1025 poises [Walcott, 1973], d1 ∼
100 km, and ∆ρ ∼ 0.1 g/cm3 from a temperature difference ∆T ∼ 1000 K with a thermal
expansion coefficient α ∼ 3 × 10−5 /K from a base density of ρ ∼ 3.3 g/cm3.) This figure
is for illustrative purposes only; the uncertainty in the appropriate viscosity is orders of
magnitude. However, if the surface viscosity of the early earth were orders of magnitude
smaller than today, as has been suggested in hot-earth models (Davies, 1990), then the
time scale would be correspondingly reduced; one possible interpretation would be that
modern subduction zones may have their origins early in the earth’s history when the
surface layer was sufficiently deformable.

APPENDICES

Appendix A. LINEARIZED SOLUTION

Here we calculate the small-amplitude growth rates for the non-inertial problem with
arbitrary wavelength, depths, and viscosities. (This is an extension of the analysis given
by Whitehead and Luther, 1975, to include the effects of finite depth in fluid 2.) A more
convenient reduced pressure p̃ in each fluid is defined in terms of the total pressure P by

P1 = p̃1 + ρ1gz (A.1a)
P2 = p̃2 + ρ2gz + ∆ρgd1 (A.1b)

(or from the other reduced pressure p by p1 = p̃1+∆ρgz, p2 = p̃2+∆ρgd1) so in equilibrium
p̃ is zero. Assuming the interface disturbance varies only in the x direction and has small
amplitude and slope, the resulting 2-D problem can be linearized by applying the interface
conditions at z = d1. Then the interface conditions (2.4b-d) become:

at z = d1 :
[
u
]∣∣2

1
=
[
µ(uz + wx)

]∣∣2
1

= 0 (A.2a)
[
−p̃ + 2µwz

]∣∣2
1

= ∆ρg(δ − d1) (A.2b)
δt = w (A.2c)

where again
[ ]∣∣2

1
indicates the jump in value from fluid 1 to fluid 2. This problem is

separable and has a simple analytical solution, assuming the perturbation is sinusoidal.

The solution is given below, where k is the wave number, a(t) is the dimensionless
amplitude, Z ≡ z − (d1 + d2) is the coordinate in fluid 2, α ≡ µ2/µ1 is the viscosity ratio,
and in the coefficients A, B, E, F , and their common denominator D these abbreviations
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are used : k̃ ≡ 2kd1, K̃ ≡ 2kd2, c ≡ cosh(k̃), C ≡ cosh(K̃), s ≡ sinh(k̃), S ≡ sinh(K̃).

δ = d1[1 + a(t) cos(kx)] (A.3a-j)
Ψ1 = (∆ρgd1/µ1k

2)a(t)/2 sin(kx)[A sinh(kz) + Bkz cosh(kz)]
Ψ2 = (∆ρgd1/µ1k

2)a(t)/2 sin(kx)[E sinh(kZ) + FkZ cosh(kZ)]
p̃1 = (∆ρgd1){−a(t)B cos(kx) cosh(kz)}
p̃2 = (∆ρgd1){−a(t)αF cos(kx) cosh(kZ)}
A ≡ (−1/D){[2(S − K̃) + αk̃(C − 1)] sinh(kd1)

+ [k̃(S − K̃) + α(k̃K̃ + 2(C − 1))] cosh(kd1)}
B ≡ (2/D){(S − K̃ + αK̃) sinh(kd1) + α(C − 1) cosh(kd1)}
E ≡ (1/D){[2α(s− k̃) + K̃(c − 1)] sinh(kd2)

+ [αK̃(s − k̃) + K̃k̃ + 2(c − 1)] cosh(kd2)}
F ≡ (−2/D){[α(s − k̃) + k̃] sinh(kd2) + (c − 1) cosh(kd2)}
D ≡ (S − K̃)(s + k̃) + 2α(Cc − 1 + K̃k̃) + α2(S + K̃)(s − k̃)

Then from δt = w(z = d1) we get the growth rate:

a(t) = a(0)eσt (A.4a)
σ = (∆ρgd1/µ1)σ̃ (A.4b)

σ̃ =
1
k̃

(S − K̃)(c − 1) + α(s − k̃)(C − 1)
(S − K̃)(s + k̃) + 2α(Cc − 1 + K̃k̃) + α2(S + K̃)(s − k̃)

(A.4c)

The symmetry of the problem is apparent in the solution. Thus, without loss of generality,
assume that fluid 2 is the deeper layer: K̃ ≥ k̃.

This solution is governed by three dimensionless parameters: the non-dimensional
wavenumber k̃ (or ε), the depth ratio β ≡ d2/d1 = K̃/k̃, and the viscosity ratio α ≡ µ2/µ1.
Note that σ̃ is a monotonically decreasing function of α; if we increase µ2 while µ1 stays
constant the growth rate can only decrease. In the limit β → ∞ then (A.4c) reduces to:

σ̃ =
1
k̃

(c − 1) + r(s − k̃)
(s + k̃) + 2rc + r2(s − k̃)

(A.5)

which is just the result of Whitehead and Luther (1975). Figure 7a shows the effects of
finite depth for α � 1; figure 7b shows the effects of viscosity ratio on σ̃(k̃) for β = ∞.

When β � 1 there are well defined regimes of growth where different force balances
are dominant. These are shown schematically, with the corresponding growth rates, in
figure 8. In discussing the various growth mechanisms below, it should be kept in mind
that the same mechanisms continue to apply as long as the slope of the interface remains
small, which for long waves includes large-amplitude growth.

For sufficiently short waves (k̃ � min(1, max(β−1, α−1/3))) the disturbance sees nei-
ther boundary and σ̃ → [k̃(1 + α)]−1, so if one viscosity is much larger, that one limits the
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growth. The dominant mechanism here is that the vertical motion of the interface is re-
sisted by normal viscous stresses in the more viscous fluid, and the growth rate diminishes
with decreasing wavelength.

At the other extreme, for sufficiently long waves (k̃ � min(β−1,
√

β/α,
√

αβ)) the
boundaries confine the flow to be mainly horizontal, limited by shear stresses at the inter-
face. Then σ̃ → k̃2(1 + β/α)/12, and the controlling viscosity depends on whether α > β
or not.

Between these extremes, the waves are long compared to layer 1 so the motion of
the interface is primarily horizontal, and there are four different regimes. In one (α−1 �
k̃ � α−1/3, 1 � α � β3), fluid 2 is relatively immobile and the growth is limited by the
shear across layer 1, giving the same growth rate as the previous case, i.e., k̃2/12. (This
possibility was apparently overlooked by Whitehead and Luther.) In another (β−1 � k̃ �
min(α, α−1)), the slight resistance of fluid 2 (the rate-controlling viscosity is µ2) gives a
small shear gradient across layer 1, which over the long wavelength is sufficient to balance
the buoyancy, giving σ̃ → k̃/4α.

In the other two regimes, the less viscous fluid is effectively passive, and the primarily
horizontal motion of the more viscous layer is limited by normal viscous stresses. The
resulting growth rate is nearly independent of wavelength, and includes the maximum
growth rate possible for a given viscosity contrast α where this behavior occurs. (For
other α, i.e., 1 � α � β3, we expect the fastest growth at the crossover between short-
and long-wave behavior.) When fluid 2 is much more viscous (α � β3), this regime
(
√

β/α � k̃ � β−1) gives σ̃ → β/4α, while for fluid 1 more viscous (α � 1) this regime
(max(α,

√
αβ) � k̃ � 1) gives σ̃ → 1/4.

In the last case, examining the broad peak more closely shows that, for β−5 � α � 1,
σ̃ ≈ (1/4)(1−(α/k̃+ k̃4/720)). This broad maximum peaks at k̃max ≈ (180α)1/5 = 2.8α1/5

and σ̃max ≈ (1/4)(1−0.44α4/5). As an indication of the flatness of this peak, for the range
α4/5 < k̃ < 5.2α1/20, σ̃ ≥ (1/4)(1 − α1/5). When α � β−5, the finite depth modifies
the maximum growth rate giving σ̃ ≈ (1/4)(1− (3α/βk̃2 + k̃4/720)) with a broad peak at
k̃max ≈ 3.2(α/β)1/6 and σ̃max ≈ (1/4)(1 − 0.44(α/β)2/3).

The present work is only concerned with the case of a thin, viscous layer over a less
viscous, deep layer, so α � 1 and β � 1. We further restrict our consideration to the
mechanism giving the fastest growth, i.e., the last regime considered above, where σ̃ ≈ 1/4.
The lowest-order finite-amplitude analysis (section 3) therefore predicts that the growth is
independent of wavelength.

Appendix B. POWER-LAW FLUID
The long-wave analysis of section 3 is not limited to Newtonian fluids. The important

point is that both surfaces of the layer are shear-free, so throughout the layer shear stresses
are O(ε) smaller than normal stresses, and the latter are independent of z to O(ε2). (This
assumes the lower fluid is passive and effectively hydrostatic; the restriction this applies to
wavelength will depend on the rheology and depth of fluid 2.) Hence the horizontal force
balance (3.5, 3.6) applies for any rheology.

Here we consider a layer of fluid with a power-law rheology, subject to a disturbance
independent of y. Then the constitutive relation can be written in the form:

τxx = −τzz = 2µr sgn(ux)|ux|1/m (B.1)
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where µr has appropriate units and m > 1 for a fluid that weakens with increasing strain
rate. Eliminating τxx and u as before yields a single Lagrangian equation describing the
evolution of the thickness of the layer as we follow a material cross section, in dimensionless
form:

Dδ

Dt
= sgn(δ − de(t))δ

[∣∣δ2 − d2
e(t)
∣∣

δ

]m

(B.2)

using the same scales as before, except for the new time scale (8µr/∆ρgd1)m. For the
special case of a Newtonian fluid (m = 1) this reduces to (3.13). To simplify the notation,
we will assume that m is an odd integer.

For an infinitely long layer with a localized disturbance (i.e., constant end forces:
de = 1)

Dδ

Dt
=

(δ2 − 1)m

δm−1
(B.3)

This can be integrated by parts. For example, if m = 3:

τ(δ) =
δ

4(δ2 − 1)2
+

δ

8(δ2 − 1)
+

1
16

ln
∣∣∣∣
δ − 1
δ + 1

∣∣∣∣ (B.4)

where τ(δ) ≡ t∗ − t is the time remaining before the thickness of the fluid cross section
goes to ∞ or 0.

While the amplitude a ≡ δ − 1 remains small, the approximate solution is:

a ≈ a0[
1 − (m − 1)2mam−1

0 t
]1/(m−1)

(B.5)

where a0 is the initial amplitude. (This algebraic growth is quite different from the small-
amplitude exponential growth for Newtonian rheology.) This slow growth lasts for a period
of roughly ∆t ∼ 1/[(m − 1)2mam−1

0 ]. For large amplitudes, the growth again becomes
algebraic in the time remaining before the singularity is reached at t = t∗:

δ0 > 1 : δ ≈ 1/[m(t∗ − t)]1/m (B.6a)
δ0 < 1 : δ ≈ [m(t∗ − t)]1/m (B.6b)

This catastrophic growth occurs over a time scale ∆t ∼ 1/m (or in dimensional terms
(8µr/∆ρgh)m/m).

As in the Newtonian case, a disturbed region under constant end forces will tend to
stretch out in the x direction. To keep the wavelength constant, the end forces must vary
in time to give: ∫ L

0

[
δ2 − d2

e(t)
δ

]m

dx = 0 (B.7)

Layer profiles calculated using this condition are shown in figure 9 for m = 3 and
m = 7, from an initial sinusoidal disturbance. Profiles for the constant-end-force condition
(not shown) are qualitatively similar. The effect of increasing m is seen to be concentration
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of the deformation into narrow regions at the centers of peaks and troughs, while elsewhere
the profile becomes linear in x.

Figure 10 shows how the initial slow growth suddenly becomes catastrophic after
a certain threshold has been reached (more so for higher m). For the constant-force
condition, a trough reaches this threshold and necks off much sooner than a peak of equal
initial amplitude blows up. The constant-wavelength condition, however, causes peaks to
grow sooner than troughs.

Regardless of the end conditions, when peaks get large (compared to the current equi-
librium thickness), the large-amplitude effects still produce catastrophic growth algebraic
in the time remaining (δ ∝ 1/(t∗ − t)1/m), giving infinite thickness in finite time, as for a
Newtonian fluid.

Appendix C. LARGE-AMPLITUDE SIMILARITY SOLUTION
The equations appropriate to large-amplitude disturbances (for the two-dimensional

case) admit a rich family of similarity solutions, which illustrate a variety of behaviors.
While such solutions demand particular initial conditions, nonetheless these solutions can
be interpreted as good local approximations for situations arising from arbitrary initial
conditions. Two cases are of particular relevance to sheet formation: one describes how
a smooth finite peak evolves to an infinite singularity, the other describes how that first
singularity changes shape as the sheet evolves.

For large amplitudes de is negligible, and the Eulerian equations are:

δt + (uδ)x = 0 (C.1a)
δ + ux = 0 (C.1b)

We assume a similarity solution of the following form:

x = a(τ)ξ
δ = A(τ)f(ξ) (C.2)
u = a(τ)A(τ)g(ξ)

where τ ≡ t−t∗ is the time relative to the singular time t∗. Substition shows that similarity
requires both A′/A2 and a′/(aA) to be constants.

Choosing the scale of A (provided A′ 6= 0) gives

A(τ) = 1/τ (C.3a)

Of course, δ must be non-negative, so solutions with f ≥ 0 will apply only for τ ≥ 0,
when A is decreasing, and those with f ≤ 0 will apply for τ ≤ 0, when −A is increasing
catastrophically to τ = 0. The second constant, say λ, implies:

a(τ) = |τ |λ (C.3b)

For τ > 0, positive λ gives a profile that spreads out in the x direction, while for negative
λ the profile contracts; the converse is true for τ < 0.
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The system (C.1) becomes

−f − λ ξf ′ + (fg)′ = 0 (C.4a)
f + g′ = 0 (C.4b)

The solution involves two arbitrary constants C and D and a change of variables (as long
as λ 6= 0, 1), corresponding to a different inertial reference frame:

ζ ≡ ξ − C/(λ2 − λ)
q(ζ) ≡ g(ξ)− C/(λ − 1) (C.5)

Then the solution is given implicitly by

ζ = q + sgn(ζ − q)D|q|k (C.6a)
f = −1/[1 + sgn(q(ζ − q))kD|q|k−1] (C.6b)

where k ≡ λ/(λ−1) and D > 0. This is the general solution; a phase-plane analysis verifies
that this gives all solutions (for A(t) not constant, λ 6= 0, 1) except the trivial solutions
f = 0 and f = −1. This solution describes a variety of behaviors, depending primarily
on λ and on which branch of the solution is chosen. The constants C and D affect the x
origin and scale, respectively.

For example, consider λ > 1 (so k > 1), C = 0, D = 1, and the branch where
sgn(ξ − g) = sgn(ξ) = sgn(g):

ξ = g + sgn(g)|g|k (C.7a)
f = −1/[1 + k|g|k−1] (C.7b)

Since f ≤ 0, this solution only applies for τ ≤ 0; it describes the growth of a finite peak up
to the singular time when δ becomes infinite. The asymptotics in ξ reveal the behavior:

as |ξ| → 0 : δ → [1 − k|τ |−k|x|k−1]/|τ |
u → −x/|τ | (C.7c)

as |ξ| → ∞ : δ → |x|−1/λ/k

u → −sgn(x)|x|1/k (C.7d)

The first (C.7c) applies for x near the origin (|x| � |τ |λ). The peak is of fairly general
shape, but to be analytic in x, k must be an odd integer. The second (C.7d) applies far
from the origin early on (τ � 0), but applies ever nearer until at the singular time, it
applies for all x. The asymptotic shape (C.7d) is independent of time; as the peak grows it
fills in the profile of the integrable negative power of x. For a smooth peak, k = 3, λ = 3/2
and at the singular time δ ∝ |x|−2/3 (for any D).

As a second example, λ > 1, C = sgn(ξ), D = (λ − 1)k/λ, and the branch where
sgn(ξ) = −sgn(g):

ξ = g − sgn(g)λ−1[((λ − 1)|g| + 1)k − 1] (C.8a)
f = 1/[((λ − 1)|g|+ 1)k−1 − 1] (C.8b)
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which describes a sheet, symmetric in x, for τ ≥ 0. Asymptotically:

as |ξ| → 0 : δ → 1/[τ1−λ/2
√

2|x|]
u → −sgn(x)

√
2|x|/τ1−λ/2 (C.8c)

as |ξ| → ∞ : δ → (λ|x|)−1/λ

u → −sgn(x)(λ|x|)1/k/(λ − 1) (C.8d)

At the singular time (τ = 0), the time-independent profile (C.8d) applies everywhere; this
example shows what happens to an initial profile proportional to an integrable negative
power of x. (By a different choice of C and D, the profile (C.8d) could be made to match
(C.7d) exactly.) For τ > 0, (C.8c) applies near the origin; regardless of the starting x
dependence, the shape around the singularity (sheet) becomes proportional to 1/

√
|x|.

If λ < 2 then the square-root singularity and the corresponding strength of the sink at
the origin decay with time, as the layer drains away. (This would be true for an initially
smooth profile like (C.7c) with λ = 3/2.) Conversely, for λ > 2, the singularity grows, as
fluid comes in from the sides faster than it can be disposed of. The special case λ = 2
gives a steady sheet. There are also related solutions for λ = 0, 0 < λ < 1, and λ = 1,
which have the same asymptotic shapes (C.8c,d), except that, for |ξ| → ∞, the forms for
u are different, and for λ = 0, δ → e−|x|/t as |ξ| → ∞.

Briefly, the other behaviors governed by the similarity solution are as follows. For
τ ≤ 0, i.e., profiles growing to the singular time, there are four: (i) a zero minimum of
shape |x|k, k > 0, locally time-independent, that far away levels off to approach 1/|τ |; (ii)
a profile that approaches zero as x → −∞ and 1/|τ | as x → +∞; (iii) a symmetric finite
minimum flanked by sheets (which could be extended periodically); and (iv) a sheet whose
sides level off to approach 1/|τ |, rather than zero. For τ ≥ 0, where the profile starts at
the singular time and diminishes thereafter, there is only one other case: a zero minimum
flanked by sheets (which could extend periodically). The steady-shape case of A(τ) = 1, so
a(τ) = eλτ , gives either an isolated sheet, or a zero minimum where |δx| → ∞ surrounded
by sheets (possibly periodic). Note that solutions with the same A(τ) and λ but different
C and D can be “cut and pasted” together to give other similarity profiles; if g and g′

are continuous this will produce reasonable results. All cases with sheets show the same
1/
√
|x| shape.
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FIGURE CAPTIONS

Figure 1. Problem description. Between two horizontal, shear-free planes, a layer of fluid 1
of uniform thickness d1 is initially in unstable equilibrium over a layer of fluid 2 of thickness
d2. The upper layer is denser (ρ1 > ρ2), much thinner (d1 � d2), and much more viscous
(µ1 � µ2). After the interface is perturbed, its position is given by δ(x, y, t).
Figure 2. Balance of horizontal forces, reduced by the hydrostatic pressure gradient of
fluid 2, on a differential column of fluid 1. Because there is no shear above or below and
no (reduced) pressure below, the reduced horizontal force tensor Fij acting on the vertical
surfaces of the column has zero divergence.
Figure 3. Interface profiles δ(x) at various times (t = 2.5, 3.0, 3.5, 3.7) following the
evolution of one wavelength of an initial sinusoidal perturbation of amplitude 10−3, for
the constant-end-force condition (F = 1). (Here the peak reaches infinite thickness at
t∗ = 3.80.) As nonlinear effects become important, the peak sharpens while the troughs
flatten and widen; also the wavelength increases over time.
Figure 4. Interface profiles for the constant-wavelength end condition (L = 1). Similar
to Figure 4, except that the troughs become thin more slowly, the peaks reach infinite
thickness slightly sooner (at t∗ = 3.74), and the wavelength remains constant.
Figure 5. Growth of the disturbance amplitude over time for an initial perturbation
amplitude of 10−3. Both the peak amplitude amax = δmax − 1 and the trough am-
plitude amin = 1 − δmin are shown: constant-wavelength condition (solid), constant
end-force (dashed), and linearized (exponential) growth (dotted), for comparison. The
constant-wavelength condition tends to destabilize peaks but stabilize troughs relative to
the constant-force condition.
Figure 6. Interface profiles δ(r) for an initial axisymmetric sinusoidal perturbation of
amplitude 10−3, where the disturbance is contained within a constant radius (R = 1).
The central peak grows more quickly than the outer ring-shaped peak of the same initial
amplitude.
Figure 7. Linearized growth rate σ̃ (A.4c) as a function of dimensionless wavenumber ε:
(a) for viscosity ratio α ≡ µ2/µ1 = 10−3 and depth ratios β ≡ d2/d1 = 1, 103, and ∞; (b)
for deep fluid (β = ∞) and α = 10−3, 0.1, 1, 10, 103.
Figure 8. Linearized growth regimes for β � 1 in the (k̃, α) parameter plane, showing the
asymptotic growth rates σ̃ in each regime. (Dashed lines indicate change of rate-controlling
viscosity.)
Figure 9. Interface profiles δ(x) for a power-law fluid, for an initial sinusoidal perturbation
of amplitude 0.1, for the constant-wavelength conditions (L = 1): (a) power-law exponent
m = 3, at times t = 0, 4, 5, and 6 (t∗ ≈ 6.08); (b) m = 7 and t = 0, 1200.0, and 1296.4
(t∗ ≈ 1296.5). For higher m the deforming region is more compact, and the profile tends
toward straight lines between the deforming regions.
Figure 10. Growth of the disturbance amplitude over time for a power-law fluid given an
initial perturbation amplitude of 0.1: constant-wavelength L = 1 (solid), constant end-
force F = 1 (dashed), and small-amplitude approximation (B.5) (dotted). (a) m = 3; (b)
m = 7. For constant force, the trough (amin) would pinch off long before the peak (amax)
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becomes infinite, but the constant-wavelength condition makes the peaks less stable and
troughs more stable. For higher m, the growth abruptly becomes rapid.
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Figure �� Problem description� Between two horizontal� shear�free planes� a layer of �uid � of uniform
thickness d� is initially in unstable equilibrium over a layer of �uid � of thickness d�� The upper layer
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